What Constitutes Space?

I’ve been writing about the assorted difficulties faced in astronautical engineering, but this presupposes a certain amount of background knowledge and was quickly getting out of hand. So let’s start with a simpler question: what is space, anyway?

Generally speaking, space is the zone beyond Earth’s atmosphere. This definition is problematic, however, because there’s no clean boundary between air and space. The US Standard Atmosphere goes up to 1000 km. The exosphere extends as high as 10,000 km. Yet many satellites (including the International Space Station) orbit much lower, and the conventional altitude considered to set the edge of space is only 100 km, or 62.1 miles.

This figure comes from the Hungarian engineer Theodore von Kármán. Among his considerable aerodynamic work, he performed a rough calculation of the altitude at which an airplane would need to travel orbital velocity to generate sufficient lift to counteract gravity, i.e. the transition from aeronautics to astronautics. It will vary moderately due to atmospheric conditions and usually lies slightly above 100 km, but that number has been widely accepted as a useful definition for the edge of space.

To better understand this value, we need to understand just what an orbit is.

Objects don’t stay in space because they’re high up. (It’s relatively easy to reach space, but considerably harder to stay there.) The gravity of any planet, Earth included, varies with an inverse square law, that is, the force which Earth exerts on an object is proportional to the reciprocal of the distance squared. This principle is known as Newton’s Law of Universal Gravitation. Its significance for the astronautical engineer is that moving a few hundred kilometers off the surface of Earth results in only a modest reduction of downward acceleration due to gravity.

To stay at altitude, a spacecraft does not counteract gravity, as an aircraft does. Instead, it travels laterally at sufficient speed that the arc of its curve is equal to the curvature of Earth itself. An orbit is a path to fall around an entire planet.

The classic example to illustrate this concept, which also comes from Newton, is a tremendous cannon placed atop a tall mountain (Everest’s height was not computed until the 1850s). As you can verify at home, an object thrown faster will land further away from the launch point, despite the downward acceleration being identical. In the case of our cannon, a projectile shot faster will land further from the foot of the mountain. Fire the projectile faster enough, and it will travel around a significant fraction of the Earth’s curvature. Firing it fast enough1 and after awhile it will swing back around to shatter the cannon from behind.

Newton_s_cannon_large.gif (313×242)

Source: European Space Agency

In this light, von Kármán’s definition is genius. While there is no theoretical lower bound on orbital altitude2, below about 100 km travelling at orbital velocity will result in a net upwards acceleration due to aerodynamic lift. Vehicles travelling below this altitude will essentially behave as airplanes, balancing the forces of thrust, lift, weight and drag—whereas vehicles above it will travel like satellites, relying entirely on their momentum to stay aloft indefinitely.

But we should really give consideration to aerodynamic drag in our analysis, because it poses a more practical limit on the altitude at which spacecraft can operate. Drag is the reason you won’t find airplanes flying at orbital speeds in the mesosphere, and the reason satellites don’t orbit just above the Kármán line. Even in the upper atmosphere, drag reduce a spacecraft’s forward velocity and therefore its kinetic energy, forcing it to orbit at a lower altitude.

This applies to all satellites, but above a few hundred kilometers is largely negligible. Spacecraft in low Earth orbit will generally decay after a number of years without repositioning; the International Space Station requires regular burns to maintain altitude. At a certain point, this drag will deorbit a satellite within a matter of days or even hours.

The precise altitude will depend on atmospheric conditions, orbital eccentricity, and the size, shape, and orientation of the satellite, but generally we state that stable orbits are not possible below 130 kilometers. This assumes a much higher apoapsis: a circular orbit below 150 km will decay just as quick. To stay aloft indefinitely, either frequent propulsion or a much higher orbit will be necessary3.

On the other hand, it is exceedingly difficult to fly a conventional airplane above the stratosphere, and even the rocket-powered X-15 had trouble breaking 50 miles, which is the US Air Force’s chosen definition. Only two X-15 flights crossed the Kármán line.

Ultimately, then, what constitutes the edge of space? From a strict scientific standpoint, there is no explicit boundary, but there are many practical ones. Which one to chose will depend on what purposes your definition needs to address. However, von Kármán’s suggestion of 100 km has been widely accepted by most major organizations, including the Fédération Aéronautique Internationale and NASA. Aircraft will rarely climb this high and spacecraft will rarely orbit so low, but perhaps having few flights through the ambiguous zone helps keep things less confusing.

1For most manned spaceflights, this works out to about 7,700 meters per second. The precise value will depend on altitude: higher spacecraft orbit slower, and lower spacecraft must orbit faster4. In our cannon example, it would be a fair bit higher, neglecting air resistance.

2The practical lower bound, of course, is the planet’s surface. The Newtonian view of orbits, however, works on the assumption that each planet can be approximated as a single point. This isn’t precisely true—a planet’s gravitation force will vary with the internal distribution of its mass, which astrodynamicists exploit to maintenance the orbits of satellites. That, however, goes beyond the scope of this introduction.

3The International Space Station orbits so low in part because most debris below 500 km reenters the atmosphere within a few years, reducing the risk of collision. This is no trivial concern—later shuttle missions to service the Hubble Space Telescope, which orbits at about 540 km, were orchestrated around the dangers posed by space junk.

4Paradoxically, we burn forward to raise an orbit, speeding up to eventually slow down. This makes perfect sense when we consider the reciprocal relationship between kinetic and potential energy, but that’s another post.

German Researcher Discovers Most Efficient Path to Mars

A civil engineer in Essen, Germany has determined the transfer orbit which will get astronauts to Mars the quickest.

Walter Hohmann, a civil engineer, spent several years studying physics and astronomy before publishing his book The Attainability of the Celestial Bodies. It may become required reading for NASA mission planners.

Fuel requirements will be central to the architecture of interplanetary spaceflights, Dr. Hohmann expects. To account for this, he solved for the trajectory which requires the least amount of velocity change, or what scientists call “delta V”. Spacecraft produce this acceleration by firing rocket engines.

The most efficient orbit between two planets turned out to be an ellipse that lies tangent to the planets’ orbital paths.


Source: University of Arizona

Such an orbit requires the least amount of energy to achieve when starting from Earth, but has a serious drawback. Least-energy trajectories are also the slowest. For a crewed mission, taking along enough food and oxygen could make a less efficient path ultimately cheaper.

Another problem is waiting for planets to be in the right place for launch. Because Earth orbits the sun faster than the outer planets and slower than the inner planets, the possible alignment for such a transfer trajectory only occurs occasionally. The window to leave for Mars only opens every two years, for example. Launching interplanetary spacecraft at other times would require vastly more fuel.

Nevertheless, astronomers and aerospace engineers find Dr. Hohmann’s discovery extremely useful for designing space missions.

Happy Amazing Breakthrough Day!