Book Review: Artemis

Andy Weir made it big with The Martian, a survival story about an astronaut abandoned on Mars. The Martian is a very individualized book, focusing mostly on the exploits of a single person, with brief interludes to small teams at NASA and in space.

Artemis is a very different sort of story. Like The Martian, it is set at some unspecified point in the future, probably still the mid-to-late 21st Century. But instead of an astronaut alone on a planet, Artemis is the tale of a smuggler trying to pay off her debts in the first Lunarian city. It may only be about 2000 people, but they’re packed in tight. That itself is a very different sort of setting.

It’s also a different sort of conflict. Mark Watney was trapped on Mars essentially by accident. Jasmine Bashara is paying a much more dangerous game: industrial sabotage for one of the richest people on the Moon, who wants to steal a government contract from even richer people on the Moon. Well, what passes for a government contract. Artemis doesn’t really have a coherent political structure, or even a real currency. Transactions are conducted in soft-landed grams, or slugs, which are basically a credit with the megacorporation that set up the lunar colony in the first place.

That turns out to be a significant plot point. Slugs aren’t real currency, and aren’t monitored as such. Criminal organizations from Earth exploit this little fact to launder money on Luna, with marginally-profitable aluminum production as a front. They aren’t happy when Jasmine destroys several of their ore collectors. Barely making it back into the city, she’s suddenly on the run from—not the law, exactly, but definitely from the mob. Her employer is brutally murdered and she realizes her family is in danger. She goes into hiding and asks her estranged father to do the same.

As Jazz tries to figure out what’s going on, she realizing that money-laundering was just the beginning. That story could be told anywhere, but this is Artemis, the only city outside Earth’s gravity well. The real MacGuffin in a new technology, worth at least billions of dollars, that can’t be manufactured in a high-gravity environment. If the cartels get control of its production, then Luna will be in their pocket, forever.

She assembles an unusual team to finish the job of taking down Sanchez Aluminum. An ESA scientist, the chief of the EVA guild (which tried to prevent her from making it into the city), an ex-friend (who let her back in despite his better judgement), and her father, a career welder. With the tacit blessing of Artemis’ chief executive, they plot to shut down the Sanchez Aluminum facility directly.

It’s a relatively simple plan: scare the staff out of the smelting facility, breach the dome’s hull, trick the control system into thinking the smelter is undertemperature, and let it overheat trying to compensate. Once the facility is out of commission, Sanchez Aluminum will lose their power-for-oxygen contract, killing their profitability. Jazz’s erstwhile employer had a large reserve of oxygen and machinery built up, and his orphaned daughter will step in with the same offer to take over supplying the city in exchange for unlimited free power.

Okay, maybe it’s not a that simple of a plan. And, this being fiction, something has to go wrong. Most of the Sanchez Aluminum employees evacuate per plan, but one doesn’t. Loretta Sanchez, mastermind of the company, thinks she can resolve a little toxic gas alarm by herself. Jazz realizes that Sanchez has no idea what’s about to happen to her prized smelter, and barely manages to force her into the jerry-rigged airlock.

As they head back for the city, they realize there’s a problem. No one is answering the radio. Sanchez runs through the possible products of the smelter explosion and figures out that a massive amount of chloroform has entered the city’s air supply, incapacitating the entire population. Contrary to the movies, chloroform kills after about an hour of exposure. They’re on the clock.

The next thirty minutes are complication-tastic and I won’t try to summarize them. Long story short, Jazz has to head outside to open up the oxygen tanks, and can’t do it in the tourist pressure suit she donned in haste. (They’re called hamster balls for a reason.) She punctures the suit to get leverage, fully expecting to die in the process.

She wakes up in the city medical center, with the sort of radiation and heat burns one would expect after being exposure to the vacuum of space and lunar surface. Her EVA partners managed to get her inside before hypoxia did permanent damage, and the city is more-or-less saved. No one died of chloroform poisoning, and the low gravity prevented any fatal injuries.

The mob may have been deactivated in Artemis, but Jazz is still on the hook for a variety of crimes. The head administrator intends to deport her to Earth, which wouldn’t quite be a death sentence, but not exactly a good outcome for our protagonist.

Jazz manages to strike a deal. She’s the dominant smuggler in Artemis, and always keeps careful control over what comes in. Without her, less scrupulous characters will step in to satisfy demand. In exchange, she gives the city a “‘Deport-Jazz for Free’ card”, a confession to her various offenses which they can use if she breaks an official rule again.

By this point, she’s paid off her debt: a new workshop for her father with the equipment and material stock destroyed in a fire Jazz started during her irresponsible teenage years. That costs about half the fee she’d earned for taking down Sanchez Aluminum. Artemis takes the rest, in the form of a “voluntary donation” since they don’t technically have fines. From an economic standpoint, she’s back to square one.

Socially, it’s a different story. A lot of Artemisians are unhappy with her, but she’s also earned a lot of trust back from her friends and family. It’s also strongly implied that she’s going to start dating her scientist friend, though that isn’t definite.

I’ve seen some criticism of Weir’s decision to write a female narrator. Some have even gone so far as asking whether he’s talked to a woman. According to the acknowledgements, he has, and I’m willing to give him the benefit of the doubt of this. Just because a particular male-written female character feels unnatural to you doesn’t mean she’s unbelievable. Personally, I find plenty of male-written male characters unrelatable.

There’s a lot of different ways to be a human. The space of possible minds is bigger than anyone can possibly imagine, and our experiences are not universal. It’s totally absurd to demand that someone raised in a totally different culture and community to duplicate my own mental architecture. Sure, there’s general principles to get right, but details? Impossible. It’s called speculative fiction for a reason, and seeing coherent mind-models different from my own is part of why I enjoy it.

Some may be tempted to compare Artemis to The Moon is a Harsh Mistress, but I would caution against that. Yes, they’re both stories about lunar communities coming into their own, but Artemis has dramatically less social and political theorizing. Displaying some trace of economic comprehension doesn’t automatically make it a libertarian novel, just a more satisfying one.

In the end, Weir managed to write a science fiction thriller without firing a single raygun, blaster, or bullet. Instead, he manages to tell a very human tale through very real science. I know some people find that tedious, but I enjoyed it. The worldbuilding is adequate, though of course I have a hundred questions about Artemis and society on Terra that will probably never be answered. But if Weir does decides to set another book there, I’m guaranteed to read it.

artemis

Advertisements

Should We Colonize Mars Sooner or Later?

Existential threats to the human species (colloquially known as ‘x-risk’) come at three scales. The widest-scale risks would sterilize the solar system, at least, as a whole. Next are threats which could destroy civilization due to societal or technological incompetence. And at the smallest scale are risks to Earth’s habitability.

If that ordering seems odd, consider a few examples.

Threats in the first category include gamma ray bursts, nearby supernovae, or the disruption of the solar system following an encounter with a rogue star. None of these are considered particularly likely in the near future, and more importantly are centuries if not millennia beyond our capacity to defend against them.

Threats in the second category include superintelligence, runaway nanotechnology, or the development of new pathogens against which existing organisms have no natural defense. While these may seem differentiated from the first category by their origins, this is not necessarily the case. Natural pathogens are potentially just as deadly as man-made ones. Furthermore, none of these phenomena are necessarily extinction-level events—superintelligences and autonomous nanoswarms may decide that human civilization is not an adversary, and leave us alone. This is particularly the case if intentionally constructed by conscientious researchers. Such possibilities point to a separate class of civilizational issues—coordination problems—but that is quite another post.

Threats in the final category include asteroid strikes and supervolcano eruptions. Arguably, these are the most tractable of x-risks. With asteroids, in particular, early detection would allow us to perturb the body’s orbit sufficiently to pass clear of Earth, potentially decades or even centuries in advance. Supervolcanoes represent a trickier problem—our geoengineering is not so far developed to adequately predict earthquakes and volcanic eruptions, let alone attempt to prevent them. But with continued study over the next few hundred years, that may finally change.

There are two plausible positions on the efficacy of space colonization to mitigate existential risks in the third category:

  1. The technological and economic challenges inherent in developing independent off-world colonies will take a very long time to solve, so we shouldn’t bother.
  2. For those very reasons, we should start working on space colonization immediately.

It should not surprise those of you who know me which side of this dichotomy I’m on, but both sides deserve a fairer shake, because the dichotomy is basically false.

For one thing, some money and effort is already expended on space colonization. To be clear, this expenditure is a minuscule fraction of total global production. America spends approximately $19 billion on the National Aeronautics and Space Administration each year, and only a moderate percentage of that total is focused on long-term research1. NASA has a larger budget than any other space agency world-wide, and compared to the Gross World Product of about $75 trillion, we can confidently say that the global expenditure on space colonization is less than 0.03% of the planetary economy.

But even if we halted explicit interplanetary research, the push for more efficient launch vehicles and better medical and agricultural technologies would still represent progress on that front. (Satellite launches won’t end for a long time—you had better believe that Earth observation is critical to managing natural disasters!) When whatever crisis necessitated such a change was finally averted, we would likely be in a better position technologically (if not economically) to pursue off-world colonies.

The crux of the anti-colonization argument, of course, is economics. Can we afford to expend money and effort on space exploration when other problems are supposed to be more pressing? The usual pro-space responses to this question are not terribly good. Let me attempt to give better arguments.

I’ve already made one above, which is that spaceflight consumes a tiny portion of the global production surplus. America alone spends more on education than the world on spaceflight, and it’s not even clear if we’re getting our money’s worth. Those wishing to find the funds for such projects may want to look elsewhere first.

Secondly, the burden of funding astronautics is shifting (slowly!) to the private sector. A few billionaires have gotten tired of competing for the coolest yacht and started competing for the best rocket. Don’t take me for one of the naïve observers who believe space exploration has already been privatized—SpaceX, Orbital Sciences, the United Launch Alliance and all the rest absolutely could not do what they’re doing now without the help of NASA and the Department of Defense, and they know it. But this does represent a shift in the right direction.

Some protest the change on anti-capitalist grounds. I’ve seen a few people say that Elon Musk wanting to colonize Mars is bad, because wealthy individuals would get to escape whatever disaster befalls Earth while the poor perish. I think this objection is foolish for three separate reasons.

Firstly, the sort of person who makes such a criticism is unlikely to support private fortunes to begin with. Obviously, redistribution is their preferred change, but the rich spending their riches on social ends rather than wasting them on mansions is still an improvement. And trying to save humanity is certainly a social end.

Secondly, if a catastrophe does hit Earth, a predominantly wealthy population surviving is still preferable to no one surviving. I have to wonder: do the people who make these arguments entirely appreciate that the question is human extinction?

Let me state that clearly: if you value material equality above the survival of the species, you are no humanitarian.

But the near-term probability of an Earth-only threat coming to fruition is fairly low. In all likelihood, a Mars colony would develop while civilization here continues to exist. Moreover, developing societies from scratch (in multiple locations on Mars, as well as on Luna and the asteroids) will allow us to better comprehend the social problems we’re currently trying to solve. Among the questions that may be answered, will be the role that economic inequality plays in causing other undesirable ends. It may very well be that the billionaires of today are paving the way to something more progressive3.

I don’t think the value of trying out new cultural forms can easily overstated. A major obstacle to solving our problems on Earth is that there’s very little room in which to explore ideas. Succession is illegal in pretty much every country. Taxation and regulation severely limit the space in which experimental communities can be practical4. Of course, Seasteading addresses this particular issue without leaving the planet, but it does not address major planetary risks5, and is unlikely to scale up to the level a colony off-world eventually would.

If we’re taking civilizational threats seriously, we have to decide: colonize Mars sooner or later? To a certain extent, it is an empirical question—what timeline and resource distribution maximizes our odds?—but a question we have to answer on woefully incomplete data.

We don’t know much about the asteroid threat from the inner solar system. We don’t know much about supervolcanoes. We don’t understand the atmosphere well enough to rule out a runaway greenhouse effect. Nor do we understand intelligence enough to predict when or if AI would become a threat, or what the preconditions for a global pandemic are.

For that reason, I advocate increasing work on planetary defense and existential risks across the board—including, yes, space colonization. Now I don’t think that that will be a particularly fast process. Even if landing humans on Mars by 2027 is technologically feasible, founding a colony in the next decade would probably be a suicide mission. There’s just too much prerequisite work to be done.

But that’s true on every front of the fight for our species’ survival. Every year we delay, is a year left to chance. Some argue that the odds are low, because there’s no a priori reason to believe we’re living in a special time6. I reject this argument. There may be no reason to assume that we exist towards the beginning or the end of the human population distribution, but there’s no reason to believe, either, that the last humans will know they’re the last humans until disaster actually strikes. If we’re them (or their parents), well, optimism won’t do us any good.

On the other hand, if disaster doesn’t strike but we’ve cleaned up our environment, created a more resilient infrastructure, developed friendly artificial intelligence, learned how Earth’s interior really works, and colonized the solar system—what a shame. We made a better world, a world that’s now safer and more prosperous than ever, and no threat materialized. Or rather, threats were prevented from materializing.

There’s no deadline, of course, no point after which we’re in the clear. There will always be some risk, even if it’s just from the spontaneous collapse of the universe. But every threat we successfully address leaves humanity better positioned to tackle the next one. Design thorium reactors to end greenhouse emissions, put them in rockets to power advanced propulsion engines. Scale up the rockets we use to deflect asteroids, ride them to Mars. Genetically engineer crops to feed the Martians, send them back to Earth to solve overpopulation. And so on and on, till one fine century we control the stars and save whole systems from destruction.

So let’s get started.

MarsTerraformingSequence


1The vast majority of the agency’s expenditures are on space science2, Earth science, aeronautics, technology research, and supporting operations on the International Space Station. Maintaining a continuously-inhabited station in orbit goes a long way towards preparing for interplanetary missions, but most of the research done on-orbit is focused on more immediate applications such as medicine and materials science.

2Whether lunar, solar, and interplanetary probes count as spending towards eventual colonization probably depends on who you ask.

3I was tempted to write fully-automated luxury communism, but I wouldn’t want to give new readers an incorrect impression of my views. I’m an ex-libertarian more because I support spending 0.5% of the federal budget on space exploration than because I want to nationalize the economy.

4In particular, the requirement to pay county, state, and federal taxes forces more communalist groups to trade on the market, which does nothing to help demonstrate the efficacy of collectivized economic models (or lack thereof).

5That said, Seasteading could prove more environmentally friendly than living on the land. Solar and wind power are practical on such scales, and I doubt seasteaders will waste precious deck area watering grass they’ve no plans to enjoy.

6See Brandon Carter’s Doomsday Argument.